217 research outputs found

    The Dialog of Primary and Non-primary Auditory Cortex at the 'Cocktail Party'

    Get PDF
    In this issue of Neuron, O'Sullivan et al. (2019) measured electro-cortical responses to "cocktail party" speech mixtures in neurosurgical patients and demonstrated that the selective enhancement of attended speech is achieved through the adaptive weighting of primary auditory cortex output by non-primary auditory cortex.</p

    Laminar fMRI: applications for cognitive neuroscience

    Get PDF
    The cortex is a massively recurrent network, characterized by feedforward and feedback connections between brain areas as well as lateral connections within an area. Feedforward, horizontal and feedback responses largely activate separate layers of a cortical unit, meaning they can be dissociated by lamina-resolved neurophysiological techniques. Such techniques are invasive and are therefore rarely used in humans. However, recent developments in high spatial resolution fMRI allow for non-invasive, in vivo measurements of brain responses specific to separate cortical layers. This provides an important opportunity to dissociate between feedforward and feedback brain responses, and investigate communication between brain areas at a more fine- grained level than previously possible in the human species. In this review, we highlight recent studies that successfully used laminar fMRI to isolate layer-specific feedback responses in human sensory cortex. In addition, we review several areas of cognitive neuroscience that stand to benefit from this new technological development, highlighting contemporary hypotheses that yield testable predictions for laminar fMRI. We hope to encourage researchers with the opportunity to embrace this development in fMRI research, as we expect that many future advancements in our current understanding of human brain function will be gained from measuring lamina-specific brain responses

    Effects of cross-modal asynchrony on informational masking in human cortex

    Get PDF
    In many everyday listening situations, an otherwise audible sound may go unnoticed amid multiple other sounds. This auditory phenomenon, called informational masking (IM), is sensitive to visual input and involves early (50-250 msec) activity in the auditory cortex (the so-called awareness-related negativity). It is still unclear whether and how the timing of visual input influences the neural correlates of IM in auditory cortex. To address this question, we obtained simultaneous behavioral and neural measures of IM from human listeners in the presence of a visual input stream and varied the asynchrony between the visual stream and the rhythmic auditory target stream (in-phase, antiphase, or random). Results show effects of cross-modal asynchrony on both target detectability (RT and sensitivity) and the awareness-related negativity measured with EEG, which were driven primarily by antiphasic audiovisual stimuli. The neural effect was limited to the interval shortly before listeners' behavioral report of the target. Our results indicate that the relative timing of visual input can influence the IM of a target sound in the human auditory cortex. They further show that this audiovisual influence occurs early during the perceptual buildup of the target sound. In summary, these findings provide novel insights into the interaction of IM and multisensory interaction in the human brain.</p

    Homology and Specificity of Natural Sound-Encoding in Human and Monkey Auditory Cortex

    Get PDF
    Understanding homologies and differences in auditory cortical processing in human and nonhuman primates is an essential step in elucidating the neurobiology of speech and language. Using fMRI responses to natural sounds, we investigated the representation of multiple acoustic features in auditory cortex of awake macaques and humans. Comparative analyses revealed homologous large-scale topographies not only for frequency but also for temporal and spectral modulations. In both species, posterior regions preferably encoded relatively fast temporal and coarse spectral information, whereas anterior regions encoded slow temporal and fine spectral modulations. Conversely, we observed a striking interspecies difference in cortical sensitivity to temporal modulations: While decoding from macaque auditory cortex was most accurate at fast rates (> 30 Hz), humans had highest sensitivity to ~3 Hz, a relevant rate for speech analysis. These findings suggest that characteristic tuning of human auditory cortex to slow temporal modulations is unique and may have emerged as a critical step in the evolution of speech and language

    Opponent Coding of Sound Location (Azimuth) in Planum Temporale is Robust to Sound-Level Variations

    Get PDF
    Abstract Coding of sound location in auditory cortex (AC) is only partially understood. Recent electrophysiological research suggests that neurons in mammalian auditory cortex are characterized by broad spatial tuning and a preference for the contralateral hemifield, that is, a nonuniform sampling of sound azimuth. Additionally, spatial selectivity decreases with increasing sound intensity. To accommodate these findings, it has been proposed that sound location is encoded by the integrated activity of neuronal populations with opposite hemifield tuning (&quot;opponent channel model&quot;). In this study, we investigated the validity of such a model in human AC with functional magnetic resonance imaging (fMRI) and a phase-encoding paradigm employing binaural stimuli recorded individually for each participant. In all subjects, we observed preferential fMRI responses to contralateral azimuth positions. Additionally, in most AC locations, spatial tuning was broad and not level invariant. We derived an opponent channel model of the fMRI responses by subtracting the activity of contralaterally tuned regions in bilateral planum temporale. This resulted in accurate decoding of sound azimuth location, which was unaffected by changes in sound level. Our data thus support opponent channel coding as a neural mechanism for representing acoustic azimuth in human AC

    Tonotopic maps in human auditory cortex using arterial spin labeling

    Get PDF
    A tonotopic organization of the human auditory cortex (AC) has been reliably found by neuroimaging studies. However, a full characterization and parcellation of the AC is still lacking. In this study, we employed pseudo-continuous arterial spin labeling (pCASL) to map tonotopy and voice selective regions using, for the first time, cerebral blood flow (CBF). We demonstrated the feasibility of CBF-based tonotopy and found a good agreement with BOLD signal-based tonotopy, despite the lower contrast-to-noise ratio of CBF. Quantitative perfusion mapping of baseline CBF showed a region of high perfusion centered on Heschl's gyrus and corresponding to the main high-low-high frequency gradients, co-located to the presumed primary auditory core and suggesting baseline CBF as a novel marker for AC parcellation. Furthermore, susceptibility weighted imaging was employed to investigate the tissue specificity of CBF and BOLD signal and the possible venous bias of BOLD-based tonotopy. For BOLD only active voxels, we found a higher percentage of vein contamination than for CBF only active voxels. Taken together, we demonstrated that both baseline and stimulus-induced CBF is an alternative fMRI approach to the standard BOLD signal to study auditory processing and delineate the functional organization of the auditory cortex. Hum Brain Mapp, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc
    corecore